郑州天顺食品添加剂有限公司

郑州食品添加剂网|河南食品添加剂生产厂家常年供应食品级食品添加剂!

全国服务热线 15003810456
您所在的位置:

核酸代谢与营养研究及发展趋势(一)

来源:郑州天顺食品添加剂有限公司 发布时间:2023-04-21 10:01:19 关注: 0 次
标签: , ,

核酸一般指生物大分子的DNA(Deoxyribonucleicacid)和RNA(Ribonucleicacid),而核酸类物质(NAS,NucleicAcidSubstance)还包括核苷酸(NT,Nucleo—tide)及其衍生物等小分子物质。构成DNA的单体是脱氧核糖核苷酸(dNMP),有dAMP,dGMP,dCMP和dTMP四种;而构成RNA的单体是核糖核苷酸(NMP),除AMP、GMP、CMP和UMP四种外,生物体中还有次黄嘌呤核苷酸(肌苷酸,IMP)和黄嘌呤核苷酸(XMP)等诸多衍生物。核苷酸可以分子内环合生成环化核苷酸(如cAMP),或附加磷酸基团生成核苷二磷酸、核苷三磷酸等。

核苷酸通过相互之间形成磷酸二酯键而生成DNA和RNA(见图1)。核苷酸脱去磷酸后生成核苷(NS,Nucleoside)。核苷酸衍生物在生物体内发挥着重要的功能,部分结构如图2所示。以NT或Ns为主要结构单元的生物大分子和小分子都属于NAS,特别是RNA种类繁多,功能多样,既可以携带和转移遗传信息,又可催化蛋白质合成和RNA加工等生物反应,还可以参与基因表达的调控。可见,NAS是一类非常重要的生物分子,它们参与遗传、基因表达与调控、生化反应等多种生物活动。NAS既是细胞构建的主要材料,又是调节细胞功能和传递信息、能量和反应基团的重要“载体”。

 

在多糖、蛋白质、脂质和核酸四种生物大分子物质中,核酸是组成单元相对简单(A、G、C、T、U五种主要碱基),而又功能多样的分子。但人类对于核酸的认识却晚于其他生物大分子,直到1953年watson和crick发现DNA双螺旋结构以后,核酸的相关研究才快速发展。另外,对于核酸仍然有许多难解之谜,如对于近几年发现的人体内数以万计的环状单链RNA(circRNA)的功能,我们仍然知之甚少。最为神奇的是,早在1970年代初期,美国植物病理学家Diener等发现了类病毒(Viroids),它只由数百碱基长的环状单链RNA构成。类病毒不含蛋白质外壳等其他分子,但能感染高等植物致病或致死。

核酸营养是指外源核酸类物质(NAS)被分解、吸收和利用,具有为生物体提供材料、能量和调控因子的功能。虽然早在1960年代,生物学家就开始对核酸营养开展研究,但科学家们的兴趣还主要在于研究NAS在细胞内的功能,发展《分子生物学》和《生物信息学》等新兴学科。核酸营养研究没有引起科学家足够兴趣的另一个原因是,即使食物中短期缺乏核酸也不会造成生物体的死亡或严重病症,而且核酸摄入被认为可能会诱发痛风。长期以来,由于在营养功能和作用机理未被阐明之前,市场上就出现了核酸类功能性食品、添加核苷酸的婴儿奶粉、饲料添加剂、肥料添加剂等各种人为添加核苷酸的产品,人们在对核酸营养功能的认识上产生了不少争议。目前,学术界和社会上都存在认识上的相互矛盾。

例如,我们的食物原料都来源于由细胞组成的生物,而细胞中都会有NAS(如活细菌中含量约为7%,酵母中约为10%,富含精子的鱼白中含量高达15%以上),科学家们也大都认为人体会对其进行吸收和利用,但在营养学领域对其研究甚少;虽然研究表明添加核苷酸具有改善生物或细胞活力的功效,但也有人认为食品中的核酸已经足够,无需额外补充;由于摄入核酸过多会加重痛风患者的症状,也有人认为核酸不但营养价值低,还是有害物质。总之,一方面是核苷酸的生产和应用越来越多,另一方面,多数人仍对其营养价值半信半疑,甚至是避而远之。随着分子生物学和营养学(特别是分子营养学)等学科的发展,再加上人们对健康的要求逐步提高,近年来对核酸营养作用的研究热度增加,并产生了一些新的认识。另一方面,由于仍然缺乏基础研究,相关知识比较零散,特别是对于食物中核酸被生物体利用的程度和机制几乎仍然是空白。

在现有的营养学教科书中,也很少涉及核酸或核苷酸相关的内容。虽然有关核苷酸营养的综述较多,也有相关的专著出版,但涉及大分子核酸的综述较少。有关核苷酸对人的营养作用的代表性综述出现在1995年,1995年之后的综述主要是针对免疫、肠道或婴儿奶粉中添加核苷酸等某一个主题,或有关核苷酸对于动物养殖的营养作用的综述。本文在对核酸营养的理论基础及发展历程进行说明的基础上,就核酸营养功能的最新研究成果进行介绍,并对一些矛盾和争议进行讨论,希望能引起更多的生物、水产养殖、药物、食品、海洋生态等交叉学科的学者的关注,并促进核酸在生物工程、土壤与海洋环境、水产养殖、禽畜养殖、食品添加剂等领域的应用发展。

一、核酸代谢与营养的理论基础

作为异养生物,动物从食物中汲取营养,一方面作为生长和新陈代谢的原料,一方面用于补充维持正常生命活动所需能量。虽然一些异养微生物(如大肠杆菌)可以在只含有葡萄糖等有机碳源和必需的无机盐(含N、P、S等必需元素)的环境中繁殖,但高等动物需要更为均衡和全面的营养才能保持健康,同时需要摄入维生素等辅助或调控生化反应。人类也一直在寻找和利用营养丰富的食物,以高效吸收食物中的重要营养成分,减少自身合成的负担。例如,虽然人体可以合成精氨酸和组氨酸等非必需氨基酸,但这些氨基酸的摄人无疑对人体是有益的,也属于营养物质。从进化的角度说,这些非必需氨基酸可能对于人体至关重要,所以人体即使在缺乏时也能自己合成;而对于苯丙氨酸色氨酸等必需氨基酸,一般的食物中可能不易缺乏(否则很容易造成相应物种的灭绝)。那核酸类物质的情况如何呢?

因核酸是细胞最为重要的组成成分之一,NAS(特别是RNA)几乎存在于所有的食物中,似乎不容易造成缺乏。另一方面,几乎所有的生物都会自身合成核酸类物质,这也是一些科学家认为人体无需补充核酸的依据。但正是因为NAs极其重要,生物体才建立起了能够自身合成的机制。事实表明,NAS的缺乏虽不足以致命,但会对生物体的健康产生较大影响。例如,食物中缺乏核苷酸可损害肝脏、心脏、肠道和免疫系统;而外源添加核苷酸能够促进淋巴细胞的成熟、激活和增殖,改善巨噬细胞的吞噬作用等。

核苷酸是核酸分解代谓十的产物,也是合成核酸的单体。而脱氧核糖核苷酸(dNMP)可以在体内由核糖核苷酸(NMP)转化而得,且其在体内的含量一般也大大低于NMP,因此NMP是核酸营养研究的主要研究对象。NMP的合成代谢一般分为从头合成和补救合成两种途径。从头合成是指利用氨基酸、5,-磷酸核糖焦磷酸(5’-PRPP)和一碳单位(如甲酸和CO2)等合成NMP。从头合成主要在肝脏中进行,而肠粘膜、骨髓造血细胞和大脑的从头合成能力较低。补救合成是指以碱基或核苷等核酸分解产物为原料合成NMP,如碱基与5’-磷酸核糖焦磷酸反应生成相应的NMP;嘧啶碱基或腺嘌呤与1-磷酸核糖反应生成核糖核苷;核糖核苷在相应的核苷酸激酶作用下与ATP反应生成NMP等。补救合成既包括体内RNA分解产物的循环使用,也包括以摄入核酸的分解产物为原料进行合成。值得注意的是,从头合成NMP的原料甘氨酸、天冬氨酸和谷氨酰胺等都是非必需氨基酸。

声明:本文所用图片、文字来源《中国食品添加剂》,版权归原作者所有。如涉及作品内容、版权等问题,请与本网联系

相关链接:核苷酸脱氧核糖核苷酸焦磷酸苯丙氨酸色氨酸

文章版权备注

文章版权归 郑州天顺食品添加剂有限公司 所有
文章链接:https://www.tsswhg.com/43562.html
未经授权,禁止任何站点镜像、采集、或复制本站内容,违者通过法律途径维权到底!
(function(){ var el = document.createElement("script"); el.src = "https://lf1-cdn-tos.bytegoofy.com/goofy/ttzz/push.js?34cfd0b1d8f9f4f5e79eac435880aa65f93744b2e3029f816c57b79de106d2253d72cd14f8a76432df3935ab77ec54f830517b3cb210f7fd334f50ccb772134a"; el.id = "ttzz"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(el, s); })(window)